quinta-feira, 2 de janeiro de 2020


FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


As formulações matemáticas da mecânica quântica são os formalismos matemáticos que permitem uma descrição rigorosa da mecânica quântica. Estas, por sua vez, se distinguem do formalismo matemático da mecânica clássica pelo uso de estruturas matemáticas abstratas, tais como espaços de Hilbert de dimensão infinita e operadores sobre estes espaços. Muitas destas estruturas são retiradas da análise funcional, uma área de pesquisa da matemática que foi influenciada, em parte, pelas necessidades da mecânica quântica. Em resumo, os valores de observáveis ​​físicos, tais como energia e momento linear já não eram considerados como valores de funções em espaço de fase, mas como autovalores, mais precisamente como valores espectrais de operadores lineares no espaço de Hilbert.[1]
Estas formulações da mecânica quântica continuam a ser utilizadas hoje. No centro da descrição estão as ideias de estado quântico e quantum observáveis que são radicalmente diferentes daqueles usados ​​em anos anteriores nos modelos da realidade física. Enquanto a matemática permite o cálculo de muitas quantidades que podem ser medidas experimentalmente, há um limite teórico definido para valores que podem ser medidos em simultâneo. Essa limitação foi elucidada por Heisenberg através de um experimento mental, e é representada matematicamente no novo formalismo pela não comutatividade dos observáveis quânticos.
Antes do surgimento da mecânica quântica como uma teoria separada, a matemática utilizada na física consistiu principalmente de geometria diferencial e equações diferenciais parciaisTeoria das probabilidades foi utilizado em mecânica estatística. A intuição geométrica claramente desempenhou um papel importante nos dois primeiros casos e, consequentemente, em teorias da relatividade que foram formuladas inteiramente em termos de conceitos geométricos. A fenomenologia da física quântica surgiu aproximadamente entre 1895 e 1915, e de 10 a 15 anos antes do surgimento da teoria quântica (cerca de 1925) os físicos continuaram a pensar na teoria quântica dentro dos limites do que é agora chamado física clássica, e em particular dentro das mesmas estruturas matemáticas. O exemplo mais sofisticado disso é a regra de quantização de Sommerfeld-Wilson-Ishiwara, que foi formulada inteiramente no espaço de fase clássico.

Postulados da mecânica quântica[editar | editar código-fonte]

Na Mecânica Clássica a descrição de um sistema físico é resumida da seguinte forma:
  • O estado físico do sistema em um dado tempo t0 é descrito por especificando-se as  coordenadas generalizadas  e seus momentos conjugados 
  • O valor dessas grandezas físicas em um dado tempo é completamente determinado se o estado desse sistema neste tempo é conhecido. Ou seja, se o estado do sistema é conhecido podemos determinar com exatidão o estado posterior do sistema após a medida feita em 
  • A evolução no estado do sistema é dado pelas leis de Newton ou por formulações equivalentes (mecânica lagrangiana ou hamiltoniana). O estado do sistema fica completamente determinado se conhecemos suas condições iniciais
A mecânica quântica pode ser formulada a partir de diversos conjuntos de postulados e de diversos formalismos matemáticos. Seguem os postulados que fazem uso da análise funcional e que são adotados por considerável parte de textos básicos de mecânica quântica[2].
  • Todo sistema físico está associado a um espaço de Hilbert H complexo e separável, sendo o produto interno de H definido por . A todo estado físico associa-se um conjunto de vetores unitários de H que diferem apenas por uma fase complexa.
  • Os resultados possíveis em uma medida de um observável correspondem ao espectro do observável correspondente.
  • Seja A um observável físico com espectro discreto . Quando é realizada uma medida em A, a probabilidade  de encontrar o autovalor  é dada por
,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde  é o grau de degenerescência de  e  correspondem aos autovetores de A com autovalor .
  • Se em uma medida de uma grandeza física  no estado  encontramos um autovalor  de , imediatamente após a medida o estado do sistema será a projeção normalizada de  no auto-espaço associado a . Dessa forma, toda medida imediatamente após a primeira medida terá o mesmo resultado.
  • A evolução no tempo  do vetor de estado de um sistema físico é governada pela equação de Schrödinger, desde que o sistema físico mantenha coêrencia
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde H é o Hamiltoniano do sistema e  é a constante reduzida de Planck.
  • O Postulado da simetrização nos diz que quando um sistema possui várias partículas idênticas somente alguns kets do espaço dos estados podem descrever um sistema físico. Estes kets são, dependendo da natureza das partículas, completamente simétricos ou completamente assimétricos com respeito à permutação das partículas. Particulas que possuem vetores de estado simétricos são chamadas de bósons enquanto que as que possuem vetores de estado assimétrico são chamadas de férmion










Um férmion (português brasileiro) ou fermião (português europeu) é uma partícula que tem spin semi-inteiro (em unidades de ) e obedece à estatística de Fermi-Dirac.[1] Recebem este nome em homenagem ao físico Enrico Fermi. Todas as partículas elementares ou são férmions ou bósons.
Em decorrência do princípio de exclusão de Pauli, dois férmions de spin 1/2 quaisquer não podem ter simultaneamente todos os números quânticos idênticos, aí incluídos os valores das projeções ms do spin. Em decorrência disso e do fato de que para uma partícula com spin = s há 2s + 1 orientações possíveis de spin, o número máximo de ocupação de um férmion com spin 1/2 em um estado é 1 (2 se abstrair o spin) ms = +1/2 e ms = - 1/2.[2]
Exemplos de férmions:

    Motivação[editar | editar código-fonte]

    As partículas microscópicas exibem propriedades que, no começo do século XX, motivaram o surgimento da Mecânica quântica. O problema da identidade das partículas, antes tido como ponto pacífico pela Mecânica clássica, toma feição inteiramente nova.
    Duas partículas que podem ser distinguidas pela posição na mecânica clássica já não o podem ser pela mecânica quântica. Isso decorre pela imprecisão inerente às medidas efetuadas sobre os observáveis, que correspondem, grosso modo, à noção de propriedade da mecânica clássica.
    A imprecisão da mecânica quântica decorre do Princípio da incerteza de Heisenberg, que estipula restrição para a medição simultânea de propriedades incompatíveis, que são aquelas que são relacionadas pela relação de incerteza de Heisenberg

    Estatística quântica[editar | editar código-fonte]

    Com o advento da Mecânica quântica as noções de distinção das partículas subatômicas e da ocupação de estados de energia sofreram sérias reformulações.
    No começo do século XXBoltzmann havia chegado a forma correta da distribuição do número de partículas em função do nível de energia. Mas isso no âmbito da mecânica clássica.
    Contudo, principalmente com o surgimento da moderna teoria quântica, o conceito de trajetória se torna seriamente prejudicado, quando não totalmente desnecessário e contraditório.
    Uma trajetória implica o deslocamento de uma partícula (idealizada como um ponto matemático) no espaço e no tempo. Nesse sentido, uma trajetória física corresponderia, na matemática, a uma curva suave e diferenciável, completamente contínua em todos os seus pontos.
    Porém, mesmo no trabalho de Einstein sobre o movimento browniano em 1905 (publicado juntamente com outros três trabalhos: sobre o efeito fotoelétrico, sobre o calor específico dos sólidos e sobre a relatividade), esse cientista postulou trajetórias em zig-zag, descontínuas em inúmeros (para não dizer infinitos) pontos, para as moléculas e átomos, assim como também as partículas movidas, fossem elas partículas de pó, pólen, dentre outras. Assim, ainda no cenário da física clássica, as trajetórias suaves já eram admissíveis.
    Com o entendimento trazido à luz pela interpretação do princípio da incerteza de Heisenberg, e pela interpretação estatística da Função de onda dada por Max Born foi totalmente por terra a noção de que a partícula tinha trajetória definida.
    Assim sendo, não se podem distinguir partículas cujas características sejam idênticas se se aproximam muito uma da outra, porque então não se pode identifica-las pela trajetória, já que para pontos muitos próximos, dependendo da velocidade, os pontos já não são discerníveis. A relação matemática que rege essa indeterminação fundamental é a relação da incerteza de Heisenberg:
    [Xk,Pl] = i
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    onde Xk representa o operador posição, Pl representa o operador Momento linear e  o operador identidade.
    Dentro desse entendimento, a distribuição de Boltzmann não é mais válida, senão como aproximação. Verificou-se que as distribuições válidas para partículas com carácter manifestamente quântico, são as seguintes:
    A primeira é válida para partículas de Spin semi-inteiro( 1/2, 3/2, 5/2...),em unidades de , ou seja, para os férmions, ao passo que a segunda é a distribuição válida para partículas de spin inteiro (0,1,2,3...), ou seja, para os bósons.
    Pode-se explicar qualitativa e sucintamente, de forma simplificada, que para os férmions as função de onda , são funções anti-simétricas, ou seja, trocam de sinal perante a troca simultânea das coordenadas espaciais e das coordenadas de spin entre dois férmions.






    Um gás de férmionsgás de Fermi ou gás de elétrons livres é um conjunto de férmions não interativos. É a versão na Mecânica Quântica de um gás ideal, para o caso de partículas fermiônicas. Elétrons em metais e semicondutores e nêutrons em estrelas de nêutrons podem aproximadamente ser considerados gases de Fermi.
    A distribuição de energia dos férmions em um gás de Fermi em equilíbrio térmico é determinada por sua densidade, pela temperatura e pelos estados de energia disponíveis, via a estatística de Fermi-Dirac. Pelo princípio de exclusão de Pauli, nenhum estado quântico pode ser ocupado por mais que um férmion, então a energia total do gás de Fermi à temperatura do zero absoluto é tão grande quanto o produto do número de partículas pelo estado de energia de cada partícula. Por esta razão, a pressão de um gás Fermi é diferente de zero na temperatura de zero absoluto, em contraste com um gás ideal clássico. Esta então chamada pressão de degenerescência estabiliza uma estrela de nêutrons (um gás de Fermi de nêutrons) ou uma estrela anã branca (um gás de Fermi de elétrons) contra a tração interna da gravidade.
    É possível definir uma temperatura de Fermi abaixo do qual o gás pode ser considerado degenerado. Esta temperatura depende da massa dos férmions e da energia da densidade dos estados. Para metais, a temperatura do gás de elétrons de Fermi é geralmente de muitos milhares de kelvins, quando então eles podem ser considerados degenerados. A máxima energia dos férmions a temperatura do zero absoluto é chamada energia de Fermi. A superfície da energia de Fermi no momento espacial é chamada superfície de Fermi.
    Desde que as interações são negligenciadas por definição, o problema de tratar propriedades do equilíbrio e o comportamento dinâmico de um gás de Fermi se reduz ao estudo do comportamento de partículas independentes e isoladas. Como está, é ainda relativamente tratável e dá forma ao ponto de servir de base para teorias mais avançadas (tais como a teoria do líquido de Fermi ou a teoria perturbacional) as quais levam em conta as interações com algum grau de exatidão.

      Descrição matemática[editar | editar código-fonte]

      Dentro da estrutura que a física estatística possibilita, segue-se que com a ajuda de conjuntos estatísticos para um número médio de ocupação  dos estados  com a energia  da estatística de Fermi-Dirac:
      X

      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      Onde  é o potencial químico a temperatura e  a constante de Boltzmann.
      Estes férmions, que estão sujeitos ao princípio de exclusão de Pauli, podem estar na condição de máxima ocupação, ou seja . Esta condição é que a estatística de Fermi-Dirac tratará para qualquer valor de preenchimento pleno , porque o potencial químico de um gás ideal de Fermi não é sujeito a quaisquer restrições.

      Gás de Fermi como modelo para os núcleos dos átomos[editar | editar código-fonte]

      O primeiro pesquisador a apontar uma explicação simples para o movimento independente de núcleons através do núcleo atômico em seus estado fundamental foi Weisskopf.[1] Tal explicação usa como base o modelo de gás de Fermi. O modelo utilizado é essencialmente o mesmo utilizado para tratar de elétrons livres em um metal condutor. É suposto que cada núcleon do núcleo atômico mova-se num potencial efetivo atrativo que representa um efeito médio de suas interações com os outros núcleons naquele núcleo. Há um valor constante dentro do núcleo para este potencial e externamente ao núcleo ele decresce até zero a uma distância igual ao alcance das forças nucleares e é aproximadamente igual a um poço quadrado infinito e tridimensional, de raio ligeiramente superior ao raio do núcleo.[2] O núcleo atômico contém dois tipos de partículas, os prótons e os neutrons e ambos têm um momento angular intrínseco, ambos são classificados como férmions de spin 1/2, mas sendo duas partículas distinguíveis o princípio de exclusão de Pauli age independentemente sobre cada um deles. Assim podemos considerar que o núcleo é constituído por dois gases de Fermi, o dos prótons e o dos nêutrons e que corresponderão a dois estado energéticos diferentes e cada estado só pode ser ocupado por apenas dois prótons ou dois nêutrons, com spins de sinais opostos.[3][4][5]